Increasing effectiveness in oil industry research on the horizon

Next to the continuous growth of the renewable energy industry, increasingly greater emphasis is placed on maximizing the effectiveness of extracting fossil fuels and their environmentally friendly processing.

ThalesNano’s existing initiatives in this field have just received a major boost via the award of a new grant from the Competitive Central Hungary Operational Program 2.2.1-15-2016-00062 tender. The grant will enable ThalesNano to accelerate the development of a modular testing device capable of assisting the leading research institutes of the world in both extraction and processing.

ThalesNano Inc. entered the flow chemistry market in 2004 with the first member of its still available H-Cube® product family, which won numerous awards in and outside of Hungary as well. In the past 10 years, the company launched a number of products that are used in the everyday laboratory practice already in 42 countries. The product range supports the activities of the world’s leading pharmaceutical, agrochemical, fragrance and food industry companies in early stage research and initial upscaling phases.

Based on this background, ThalesNano Inc. entered into a collaborative development with Prof. Rigoberto Advincula from Case Western Reserve University in the USA, which is at the forefront of oil industry research. The prototype developed as a result of this joint effort is already successfully implemented at one of the world’s biggest oil industry firms, thus, laying the groundwork for the success of the further development carried out through the grant.

The use of robotics plays a key role in the project, along with the fast modification of experimental parameters for the rapid evaluation of results. Thanks to the high degree of automation, the product will facilitate the research and developmental processes of petrochemicals or other closely-related fields of the same parameter space (pyrolysis, biomass applications).

ThalesNano Inc. received a grant of HUF 163,703,553 (USD 652,205) through the tender for realizing the development, which, supplemented with its own contributions and utilizing its social capital, significantly contributes to increasing the efficiency of oil industry-related research.

ThalesNano and University of Szeged Awarded $4.8 Million National Innovation Grant To Create Revolutionary H2-GENERATION AND CO2 Valorization Platforms

ThalesNano and University of Szeged have won a grant as part of the highly competitive GINOP (Economic Development and Innovation Operational Program) 2.2.1-15-2017-0041 program from the Hungarian Ministry for National Economy. The project will be implemented under the Széchenyi 2020 program using funds from the European Union.

The total project budget is $4.8 million and will be spent over four-years to develop state-of-the-art platforms that combine renewable energy storage with continuous-flow electrochemical CO2 conversion to valorizable products.

The grant will allow ThalesNano and the University of Szeged to continue building on their ground-breaking expertise in electrochemistry, nanocatalysis, and continuous-flow reactor development towards inventing environmentally beneficial, and economically lucrative technologies.

In addition to platform creation, funds will be used to expand ThalesNano’s Szeged-based alternative energy R&D; center, which we expect to become established at the newly built ELIPOLIS science park in 2018 and create a number of new jobs for the area.

In a joint statement, Dr. Ferenc Darvas (President of ThalesNano), Dr. Janaky Csaba (Project Research Director-University of Szeged), Richard Jones (Project Director-ThalesNano), and Alex Drijver (CEO-ThalesNano) announced:

"To develop technologies that can help reduce the rising CO2 concentration in our atmosphere is of tremendous importance to the future of this planet and our existence on it. Rather than choose the most common method, CO2 capture and storage (CCS), we aim to combine ThalesNano’s and University of Szeged’s expertise in high pressure hydrogen generation, flow technology, electrochemistry, and catalysis to generate unique platforms that will capture CO2 and convert it into useful synthetic materials using renewable electricity sources. Not only will this system help reduce the industrial CO2 output into the atmosphere, but we also expect it to help reduce the impact of large-scale chemical production through carbon recycling. A system that can be applied not just here on Earth, but also for future Mars colonization. ThalesNano and the University of Szeged have always maintained close ties through innovative collaboration projects. With this financial support, it will make our partnership even closer and enable us to make one of our most important innovative dreams a reality.”