Versatile chemistry examples performed on the Phoenix high temperature, high pressure flow reactor

The ability to explore wider chemistry space to discover new chemistry and compounds is becoming increasingly more critical as increased R&D costs go hand in hand with lower new registered molecules year on year. To achieve this, we, as chemists, must seek to expand the capabilities that we have in the lab in terms of temperature and pressure, but in a reliable and safe way. The Phoenix Flow Reactor is technology designed specifically for this process. With the ability to perform homogeneous and heterogeneous chemistry up to 450 °C and 200 bar, the Phoenix Flow Reactor is versatile enough to create new or improve on existing chemistry. In this application note, we demonstrate the flexibility of the Phoenix Flow Reactor by presenting various applications such as N-substitution, thermal Boc-removal, scalable Claisen-rearrangement and synthesis of soluble polyphosphide anions.

Download

Phoenix Flow Reactor: Your solution to dead-end chemistry

Today’s chemistry reaction space is severely restricted by conventional laboratory equipment; do not have too many options when it comes to temperature and pressure accessibility. ThalesNano’s Phoenix Flow Reactor is designed to overcome this problem by offering chemists a versatile solution that can extend their chemistry capability significantly. The continuous-flow reactor can fit either a fix bed reactor for heterogeneous catalyst/reagent chemistry or a coil for homogeneous reactions up to 450 °C and 100 bar safely.

Download

Increased throughput delivered by the new H-Cube Pro™

The H-Cube Pro improves upon the original H-Cube by offering greater hydrogen production (up to 60 mL/min) for higher throughput, wider temperature range (from 10 – 150 °C) including – for the first time – active cooling for more selective reactions. In this application note, we compare the H-Cube with the new H-Cube Pro in terms of throughput. The aim is to see how much more concentrated we can run a reaction on the H Cube Pro by taking advantage of the greater hydrogen production capability.

Download

Hydrogenation of D-glucose to D-sorbitol using continuous flow hydrogenation apparatus

This application note demonstrates the H-Cube Pro’s increased productivity in the hydrogenation of D-glucose to D-sorbitol, which is believed to be a key intermediate in biofuel production. Both the use of elevated temperatures and increased concentration were proven to be advantageous for the outcome of the reaction, resulting in higher selectivity of the desired compound and higher throughput over the H-Cube Pro continuous flow system.

Download