The implementation of sustainable and environmentally friendly protocols is an emerging field of the chemical industry. The need for safe and reliable processes as the alternative of demanding, wasteful, toxic or hazardous methods is pointing towards a new paradigm in organic synthesis. Enabling technologies, like flow chemistry, especially continuous flow heterogeneous catalysis makes green and sustainable chemical procedures available.
DownloadDirect alkylation of N-heterocycle under heterogeneous catalytic conditions in flow
Flow reactors are applied to conduct high temperature and high pressure chemistry towards extending the accessible chemical space to access new applications.
DownloadA continuous flow process for the green and sustainable production of N-alkyl imidazoles
Ionic liquids have gained great interest during the last three decades due to their green and sustainable behavior along with their added versatility as solvents in inorganic and organic reactions as well. N-Alkylimidazole derivatives are key intermediates for the synthesis of quaternary ionic liquid salts.
DownloadUsing flow chemistry in agrochemical applications
The need for easy and fast high throughput screening tools to find target compounds which can be patented and produced in commercial scale is ever growing. Such a tool is flow chemistry, which is being employed in several chemical industries due to its benefits. In this application note we provide information from patents from major agrochemical companies, Syngenta and Dow Agrosciences, where flow chemistry was used for the synthesis of active compounds.
DownloadCatalyst screening and profiling
ThalesNano is already well-known for its novel solutions in revolutionizing heterogeneous catalytic hydrogenations with its H-Cube® hydrogenator, while the expanded H-Cube series of fixed bed reactors offers a broad range of chemistry applications. With a wide portfolio of different catalysts available in our proprietary CatCart® catalyst cartridges ThalesNano is also heavily involved in the development, of novel catalysts, screening and profiling of catalysts.
In this application note we share the results of the optimization of the flow rate and temperature during the stereoselective hydrogenation of diphenyl acetyle. Furthermore, the longevity of the catalyst is also described, showing a slight increase in conversion and selective over 20 reactions.
Gaseous reagent organic chemistry makes easy
The Gas Module works seamlessly with the H-Cube Pro allowing a further 13 gases to be used at up to 100 bar using the same touch screen intuitive controls. Reactions such as carbonylation or oxidation can now be performed on the H-Cube Pro at the same high pressure and ease of use, extending the reactor’s chemistry capacity significantly, as it is presented in this application note.
DownloadSafe and efficient Diels-Alder cycloaddition reactions under continuous flow
Modern flow chemistry methods offer new chemical space for drug discovery programs: novel compounds can be synthesized in dedicated high temperature/high pressure (high T/p) reactors, while reaction times can be shortened dramatically.
DownloadVersatile chemistry examples performed on the Phoenix high temperature, high pressure flow reactor
The ability to explore wider chemistry space to discover new chemistry and compounds is becoming increasingly more critical as increased R&D costs go hand in hand with lower new registered molecules year on year. To achieve this, we, as chemists, must seek to expand the capabilities that we have in the lab in terms of temperature and pressure, but in a reliable and safe way. The Phoenix Flow Reactor is technology designed specifically for this process. With the ability to perform homogeneous and heterogeneous chemistry up to 450 °C and 200 bar, the Phoenix Flow Reactor is versatile enough to create new or improve on existing chemistry. In this application note, we demonstrate the flexibility of the Phoenix Flow Reactor by presenting various applications such as N-substitution, thermal Boc-removal, scalable Claisen-rearrangement and synthesis of soluble polyphosphide anions.
DownloadOptimization of N-alkylation in the Phoenix Flow Reactor using 45 MHz picoSpin bench-top NMR for monitoring
Flow chemistry is a widely accepted technique in the synthesis field and makes optimization fast and convenient. Benchtop NMR instruments allow chemists to measure 1H NMR spectra directly in the fume hood and monitor pseudo real-time behavior of reaction chemistries.
DownloadA high temperature green method for direct N-alkylation with the Phoenix Flow Reactor
N-alkylation reaction is frequently used in various industrial, pharmaceutical and agrochemical processes, such as the production of Piribedil; a drug used in the treatment of Parkinson’s disease.
Download